

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL

BCA Honours 5th Semester Examination, 2021

CC12-BACHELOR OF COMPUTER APPLICATION (52)

THEORY OF COMPUTATION

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.	Answer any <i>four</i> questions:	$3 \times 4 = 12$
(a)	What is regular expression? Explain different regular expression notations.	3
(b)	What is finite automata? Explain.	3
(c)	Write the differences between NFA and DFA.	3
(d)	What do you mean by ε-closure? Why is it used?	3
(e)	Define parse tree. Give an example.	3
(f)	Define grammar. Explain with an example.	3

GROUP-B

2.	Answer any <i>four</i> questions:	$6 \times 4 = 24$
	(a) Test whether the string 010010 and 01010 are accepted by the finite automata	6
	given in the following figure or not.	

(b) Construct a DFA from the given NFA.

Dueseut State	Next State	
Present State	0	1
$\rightarrow q_0$	q_0, q_1	q_0
q ₁	q_2	q ₁
q_2	q ₃	q ₃
q ₃		q_2

(c) State Arden's theorem and prove it.

6

UG/CBCS/BCA/Hons./5th Sem./Computer Application/BCACC12/2021

(d) Explain Thompson's construction to convert a regular expression to NFA.	6
(e) Explain different types of grammar according to Chomsky's hierarchy.	6
(f) Write the Pumping lemma for regular expression. Show that	6
$L = \{a^n b^n \text{ where } n \ge 1\}$ is not regular.	

GROUP-C

3.	A	nswer any <i>two</i> questions:	$12 \times 2 = 24$
	· /	Construct a minimized DFA that accepts all binary strings starts with a substring 00' and ends with '11'.	12
	(b) L	et G be a grammar	12
		$E \rightarrow E + T \mid T$	
		$T \to T * F \mid F$	
		$F \rightarrow (E) \mid a$	
		low construct (i) leftmost derivation (ii) rightmost derivation and (iii) parse tree f the following sentence	
		W: (a+a*a)*(a+a)	
	(c) (i) When is a grammar called left recursive? How to remove left recursion from a grammar? Explain with an example.	6+6 = 12
	(i	i) Construct a regular grammar 'G' generating the regular set	
		$r = 01^* (0+1)^*$	
	(d) V	Vrite short notes on any <i>two</i> of the following:	$6 \times 2 = 12$
	(i) Turing machine	
	(i	i) Push down automata	
	(i	ii) Equivalence of Two Finite Automata	

__×___

(iv) Ambiguity in context-free grammar.

5188