'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
BCA Honours 5th Semester Examination, 2021

CC12-BACHELOR OF COMPUTER APPLICATION (52)

TheOry of Computation

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:
(a) What is regular expression? Explain different regular expression notations. 3
(b) What is finite automata? Explain. 3
(c) Write the differences between NFA and DFA. 3
(d) What do you mean by ε-closure? Why is it used? 3
(e) Define parse tree. Give an example. 3
(f) Define grammar. Explain with an example. 3

GROUP-B

2. Answer any four questions:
$6 \times 4=24$
(a) Test whether the string 010010 and 01010 are accepted by the finite automata given in the following figure or not.

(b) Construct a DFA from the given NFA.

Present State	Next State	
	0	1
$\rightarrow \mathrm{q}_{0}$	$\mathrm{q}_{0}, \mathrm{q}_{1}$	q_{0}
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{3}
q_{3}	-	q_{2}

(c) State Arden's theorem and prove it.

UG/CBCS/BCA/Hons./5th Sem./Computer Application/BCACC12/2021

(d) Explain Thompson's construction to convert a regular expression to NFA.
(e) Explain different types of grammar according to Chomsky's hierarchy.
(f) Write the Pumping lemma for regular expression. Show that
$L=\left\{a^{n} b^{n}\right.$ where $\left.n \geq 1\right\}$ is not regular.

GROUP-C

3. Answer any two questions:
(a) Construct a minimized DFA that accepts all binary strings starts with a substring ' 00 ' and ends with ' 11 '.
(b) Let G be a grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid a
\end{aligned}
$$

Now construct (i) leftmost derivation (ii) rightmost derivation and (iii) parse tree of the following sentence

$$
W:(a+a * a) *(a+a)
$$

(c) (i) When is a grammar called left recursive? How to remove left recursion from a grammar? Explain with an example.
(ii) Construct a regular grammar ' G ' generating the regular set

$$
\mathrm{r}=01^{*}(0+1)^{*}
$$

(d) Write short notes on any two of the following:

$$
6 \times 2=12
$$

(i) Turing machine
(ii) Push down automata
(iii) Equivalence of Two Finite Automata
(iv) Ambiguity in context-free grammar.

